

Technical Challenges in Biogas/Biomethane Plants for Production of Biofuels

Torsten Fischer and Smilja Latinovic

Krieg & Fischer Ingenieure GmbH
Bertha-von-Suttner-Strasse 9, D-37085 Göttingen, Germany
Tel.: ++49 551 900 363-0, Fax: ++49 551 900 363-29
Fischer@KriegFischer.de
www.KriegFischer.de

Amsterdam November 30th, 2022

Krieg & Fischer Ingenieure GmbH

Engineering Office, specialized in Design and Engineering of Biogas Plants

Foundation: 1999

Team: 25

Experience: > 35 Years

References: ca. 200 Biogas Plants

in: Germany, Japan, Netherlands, Austria,

Switzerland, Lithuania, Italy, Slovakia,

Canada, USA, Spain, France, Ireland,

Russia, India, China, Argentina and Ukraine

Partner in: Japan, Canada,

Bulgaria, Poland, Italy,

Spain and Ukraine

Biomethane use in Germany

Source: Branchenbarometer Biomethan 2021, Deutsche Energie-Agentur GmbH

Biomethane in Germany's transport sector

	Biomethane	Thereof fue	
Year	Feed-in	utilization	
	[GWh]	[GWh]	
2020	9,847	1,000	
2019	9,823	700	
2018	10,108	389	
2017	9,893	380	
2016	9,318	379	

Source: Fachverband Biogas e.V.

Krieg & Fischer Ingenieure GmbH

Biomethane as vehicle fuel - supply chains to filling stations

Direct connection to biomethane producer, compressed biomethane (Bio-CNG).

Used for passenger cars and light vans

Direct connection to biomethane producer, liquefied biomethane (Bio-LNG).

Primarily used for heavy goods traffic and maritime or inland waterway traffic

Compressed biomethane via gas grid and green gas certificates.

Source: IEA Bioenergy 2021

Speaker: Torsten Fischer

November 30th, 2022

Dinteloord, The Netherlands

- Built: 2011
- Substrate: sugar beet ends, sugar beet leafs, sugar beet, vegetable waste 114,000 t/a
- Digester: 4 x 4,480 m³ steel tank
- Upgrading of 1,750 m³/h biogas to 990 m³/h methane

Technical Challenges in Biogas/Biomethane Plants for Production of Biofuels

Basis of this Investigation:

- Krieg & Fischer expert reports written in the past 12 years or so.
- Court cases, Insurance cases, private orders.
- Germany, Austria, Netherlands, USA, Japan, France.
- Result: 220 expert reports.

Biogas plant with biogas upgrading unit and biomethane production, built in 2011.

Accident: 2017 Insurance Case Burning RTO

Photo by Operator

RTO (Regenerative Thermal Oxidizer)

- Exhaust gas treatment (behind the biogas upgrading unit)
- Combustion device
- Input: The CO2-stream behind the biogas upgrading unit (including CH4, VOCs, etc.) → aim: minimising methane emissions.
- Output: CO2, H2O (99+ %)

Biogas plant with biogas upgrading unit and biomethane production, built in 2011.

Accident: 2017 Insurance Case Burning RTO

Photo by Operator

Firefighters at work

Photo by Operator

Firefighters found an oil-type kind of sludge inside the RTO

Biogas Upgrading

Reason for accident:

- No proper documentation of the biogas treatment, the biogas upgrading unit incl. RTO.
- Wrongly/badly designed desulphurisation system upfront the biogas upgrading unit.
 - → accumulation of elementary sulphur in all the upgrading unit.
- Service contract for maintenance for the biogas upgrading unit. Poorly educated staff on site
 → calling the maintenance company in case something looked wrong.
- Direct reason: Solvent from the biogas upgrading unit entered the RTO accidentally. Due to the very hot environment a fire started.
- Indirect reason: badly maintained peripherical equipment → defect ball valve / dirty sludge tank / blocked outlet / inoperable electrical contact.

Inoperable Ball valve as indirect reason for the accident

Lessons learned Conclusion Biogas Upgrading Units:

- Biogas Upgrading unit: High availability compared to CHP.
- Between 2015 and 2020 about 7-10% of the investigated accidents (by Krieg & Fischer) are linked to biogas upgrading. Less though in the past couple of years.
- RTO requirements new in Germany in 2010. (Only two accidents with RTO known by Krieg & Fischer).
- Proper documentation needed.
- Clear structure/organization/responsibility for maintenance service required.
- Ongoing education of staff needed. Again and again.
- Inoperable ball valve created accidental costs of less than € 10,000 for repair and about € 100.000 for stop of operation.

In case somebody is interested in more cases:

Bioenergy accident investigation

Torsten Fischer of Krieg + Fischer Ingenieure discusses a legal investigation related to the deficiencies of a digestate dryer at a German biogas plant

First-person sleuthing: investigating a digestate dryer

orsten Fischer,
founder and managing
director at Krieg +
Fischer Ingenieure,
has been an expert
legal witness for more than
10 years covering 120 cases

My reaction

Dryers are always difficult; this is no easy job.

The job

Fermenter and plant types

High Fermenter, central agitator

Flat Fermenter, side mounted agitators

Horizontal Fermenter, reel agitator

Others and combinations

Biogas concept with upright digester

Biogas concept with flat digester

Biogas concept with a horizontal digester

Flat Digester Tank

Heat balance of a Digester Tank I

For constant Temperature:

Inflowing Heat+ generated Heat + outflowing Heat = 0 (note sign)

Heat balance of a Digester Tank II

For constant Temperature:

Inflowing Heat+ generated Heat + outflowing Heat = 0

(note sign)

$$Q_{lnput} + Q_{Heating} + Q_{mech} + Q_{biogen} + Q_{Enschw} + Q_{neutra} + Q_{loss} + Q_{Einstrahl} + Q_{Gas} = 0$$

Heat losses in two different digester tank systems (a principle overview)

Heating demand kW

Heating demand kWh

Heat Losses by Source (Top 3 most important losses)

Flat Digester Tank	[kWh]	High Digester Tank	[kWh]	
Output Substrate*	303,000	Output Substrate*	107,000	
Roof (gas holder roof)	138,000	Output Biogas	34,000	
Output Biogas	96,000	Wall (insulated)	10,000	
Result (all heat losses): required thermal energy	571,000		156,000	
Difference:	415,000			
Assuming costs (only) about 10 €ct/kWh this ends up with about € 40,000 per year.				

^{*}Output Substrate: calculated external energy - biologically produced energy

Comparison of different types of digester tanks

Digesters with gas holder roofs on top are not well-suited for biogas plants with biogas upgrading

- heat losses
- costs

in comparison to high upright or horizontal digester tanks (fully insulated tanks)

Technical Challenges in Biogas/Biomethane Plants for Production of Biofuels

Torsten Fischer and Smilja Latinovic

Krieg & Fischer Ingenieure GmbH
Bertha-von-Suttner-Strasse 9, D-37085 Göttingen, Germany
Tel.: ++49 551 900 363-0, Fax: ++49 551 900 363-29
Fischer@KriegFischer.de
www.KriegFischer.de

Amsterdam November 30th, 2022